Overconvergent Modular Symbols
ثبت نشده
چکیده
1.26920930427955342168879461700... + 0.000000000000000000000000000000...i 0.000000000000000000000000000000... + 2.91763323387699045866177922600...i 0.634604652139776710844397308500... + 1.45881661693849522933088961300...i 3.17302326069888355422198654250... +−1.45881661693849522933088961300...i 1.90381395641933013253319192550... + 1.45881661693849522933088961300...i 0.000000000000000000000000000000... + 0.000000000000000000000000000000...i 1.26920930427955342168879461700... +−2.91763323387699045866177922600...i −1.90381395641933013253319192550... + 1.45881661693849522933088961300...i −3.17302326069888355422198654250... + 1.45881661693849522933088961300...i 3.17302326069888355422198654250... +−1.45881661693849522933088961300...i
منابع مشابه
Overconvergent modular symbols Arizona Winter School 2011
Course description: This course will give an introduction to the theory of overconvergent modular symbols. This theory mirrors the theory of overconvergent modular forms in that both spaces encode the same systems of Hecke-eigenvalues. Moreover, the theory of overconvergent modular symbols has the great feature of being easily computable and is intimately connected to the theory of p-adic L-fun...
متن کاملOverconvergent Modular Symbols
The theory of overconvergent modular symbols was created by Glenn Stevens over 20 years ago, and since then the subject has had many generalizations and applications central to modern number theory (e.g. overconvergent cohomology, eigenvarieties of reductive groups, families of p-adic L-functions, just to name a few). In these notes, rather than give a systematic development of the general theo...
متن کاملComputations with overconvergent modular symbols
2 Modular symbols 2 2.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 The Manin relations . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.3 Fundamental domains . . . . . . . . . . . . . . . . . . . . . . . . 4 2.4 Solving the Manin relations . . . . . . . . . . . . . . . . . . . . . 6 2.5 The case of three-torsion . . . . . . . . . . . . . . . . . . . . . ....
متن کاملOverconvergent Modular Symbols
1.26920930427955342168879461700... + 0.000000000000000000000000000000...i 0.000000000000000000000000000000... + 2.91763323387699045866177922600...i 0.634604652139776710844397308500... + 1.45881661693849522933088961300...i 3.17302326069888355422198654250... +−1.45881661693849522933088961300...i 1.90381395641933013253319192550... + 1.45881661693849522933088961300...i 0.000000000000000000000000000...
متن کاملOVERCONVERGENT MODULAR SYMBOLS AND p-ADIC L-FUNCTIONS
Cet article est exploration constructive des rapports entre les symboles modulaires classique et les symboles modulaires p-adiques surconvergents. Plus précisément, on donne une preuve constructive d’un theorème de controle (Theoreme 1.1) du deuxiéme auteur [20]; ce theoréme preuve l’existence et l’unicité des “liftings propres” des symboles propres modulaires classiques de pente non-critique. ...
متن کامل